
1 Lagrange Multipliers
This handout was inspired by Evan Chen’s handout. This handout comes along with my video on
Lagrange Multipliers which also gives a visually intuitive explanation on how Lagrange Multipliers

work.

§1.1 Theory
Calculus is not required for math olympiads at any level, i.e. every problem has a solution that com-
pletely avoids calculus methods. One often does not get any problems when simply taking derivatives
to check whether a function is increasing, convex, etc., but when using more advanced methods graders
tend to get very picky with details, so even doing one sign error may result in getting 0 points instead
of 7. This section will introduce Lagrange Multipliers, a method that can often optimize a function
that has a restriction on its variables.

Theorem 1.1.1: Lagrange Multipliers

Let U Ă Rn be an open subset, and let f : U ÝÑ R and g : U ÝÑ R be two functions with
continuous first derivatives. Define the constraint set

S “ tx P U | gpxq “ cu

Suppose x1 P S is a local maximum of f along S. Then either ∇gpx1q “ 0 at that point, or for
some real number λ

∇fpx1q “ λ∇gpx1q

So far, this does not tell us how to actually find a global maximum/minimum, as we usually want to.
But notice that there does not even need to be a global maximum/minimum. However, we can often
transform the condition in the theorem statement that actually helps us getting something out of it.

Lemma 1.1.1: Compact Sets induce Maximums — Let K be a compact set and let f :
K ÝÑ R be a continuous function. Then f achieves a global maximum and a global minimum
over K.

This means that we will usually make U compact by showing that it is bounded and take its closure
U . This then guarantees that we could find global extrema over U . However, we want to find a global
extremum over the constraint set, so we need the following lemma.

Lemma 1.1.2: Pre-Images are Closed Sets — Let g : Rn ÝÑ R be a continuous function.
Then the set

C “ tx P Rn | gpxq “ cu

is closed for every real number c.

Now we can consider the function f : U ÝÑ R subject to the constraint set, which we also need to
be compact. By our second lemma, the set

C “ tx P Rn | gpxq “ cu
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is closed. We now define
S “ U X C “ tx P U | gpxq “ cu

and
S “ U X C “ tx P U | gpxq “ cu

As U and C are closed, S has to be closed as well. If one of them is also bounded, S is bounded, and
f achieves a global maximum over S. But since we only want to consider x P U , we have to consider
two cases.

1. x P UzU : This has to be done manually.

2. x P U : Here we can now use Lagrange Multipliers.

After this is done, we can use Lagrange Multipliers: First of all we have to check whether ∇gpxq can
be 0. If this is not the case, we can check all critical points and find the global maximum or minimum.
Here we can see why Lagrange Multipliers only work for open sets U : if it where closed, then we could
have a global extremum at the interval endpoint, where the gradiant does not necessarily have to be
0. But since we eliminated that case, we are good to go. The following is now the standard procedure
when solving a problem with Lagrange Multipliers.

1. State/show that f and g have continuous first derivatives.

2. Consider the closure U of the function f you want to optimize and consider the set C “ tx P

Rn | gpxq “ cu, which has to be closed.

3. Define S and S.

4. Show that S is bounded and hence compact. State that now f has to achieve a maximum/minimum
over S.

5. Check the boundary region and conclude that the points in there cannot be the extremum you
want to find. Thus f must achieve a global maximum over S.

6. Check that ∇gpxq ‰ 0.

7. Check all critical points. If you want to find a maximum (resp minimum), the critial point with
the largest (resp. smallest) value must be it.

§1.2 Examples

Example 1.2.1: Korea 2019

Let x, y, z be real numbers such that x2 ` y2 ` z2 “ 174. Find the difference between the
maximum and the minimum of the following expression:

x ` y ` z ´ xy ´ yz ´ zx.

Proof. Clearly, x, y, z P r´
?

147,
?

147s — U . Define the function

f : U ÝÑ R, fpx, y, zq “ x ` y ` z ´ xy ´ yz ´ zx

and the function
gpx, y, zq “ x2 ` y2 ` z2
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which are both clearly differentiable with continuous first derivatives. Set C “ tr P R3 | gprq “ 147u.
We want to optimize f over the set

S “ U X C “ tr P U | gprq “ 147u

As U and C are closed and U is bounded, S is compact, so f achieves a global maximum and minimum
over S. We may now use Lagrange Multipliers. Clearly ∇gpxq “ x2x, 2y, 2zy ‰ 0, so there exists a real
number λ such that
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x2 ` y2 ` z2 “ 147
1 ´ y ´ z “ λ ¨ 2x

1 ´ z ´ x “ λ ¨ 2y

1 ´ x ´ y “ λ ¨ 2z

Subtracting the third from the second gives gives x ´ y “ 2λpx ´ yq. If 2λ ‰ 1 than x “ y “ z, so
3x2 “ 147 ÝÑ x “ y “ z “ ˘7, giving the critical points ´168 and ´126. Otherwise, we have λ “ 1

2 ,
so x ` y ` z “ 1. Then, we have

1 “ px ` y ` zq2 “ x2 ` y2 ` z2 ` 2pxy ` yz ` zxq “ 147 ` 2pxy ` yz ` zxq

or ´xy ´ yz ´ xz “ 73, meaning fpx, y, zq “ x ` y ` z ` 73 “ 74. Since those are the three critical
points, we have that maxpfq ´ minpfq “ 74 ´ p´168q “ 242.

Example 1.2.2: Germany, Round 3, 2015/5

et x, y, z be real numbers such that x ` y ` z “ 0 and all numbers are at most 1. Prove that

x2 ` y2 ` z2 ´ xy ´ yz ´ zx ď 9

and determine all equality cases.

Proof. It is clear that x, y, z ě ´2, because otherwise the sum condition gets violated. Define the
function f : U “ r´2, 1s3 ÝÑ R with fpx, y, zq “ x2`y2`z2´xy´yz´zx and gpx, y, zq “ x`y`z “ 0.
It is easy to see that both functions are differentiable with continuous first partial derivatives. Define
the set

C “ tx P R3 | gpxq “ 0u

which is well-known to be closed. We want to maximize f along the set

S “ U X C “ tx P U | gpxq “ 0u

As U and C are closed and U is furthermore bounded, S is compact and f achieves a global maximum
over S. Let U 1 “ p´2, 1q3. We now have two cases.

1. px, y, zq P UzU 1, i.e x, y, z P t´2, 1u. In that case, exactly one variable must be ´2 and the other
two must be 1 in order for x ` y ` z “ 0 to be satisfied. It is easy to check that the inequality is
satisfied in this case, even equality is achieved.

2. px, y, zq P p´2, 1q3. For that we may use Lagrange multipliers.
First of all ∇gpxq “ x1, 1, 1y ‰ 0. Therefore, we can introduce a real number λ such that
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x ` y ` z “ 0
2x ´ y ´ z “ λ ¨ 1
2y ´ z ´ x “ λ ¨ 1
2z ´ x ´ y “ λ ¨ 1

so x “ y “ z “ 0. This critical point is the only other point besides the three points from the first case
where a global maximum could occur, but px, y, zq is clearly not a maximum, so we are done.
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§1.3 Problems
Problem 1.1 (Canada MO 1999/5). Prove that for nonnegative real numbers a, b, c with a` b` c “ 1
we have

a2b ` b2c ` c2a ď
4
27 .

§1.4 Solutions
Problem 1.1 (Canada MO 1999/5). Prove that for nonnegative real numbers a, b, c with a` b` c “ 1
we have

a2b ` b2c ` c2a ď
4
27 .

Proof. Define the function f : U “ r0, 1s3 ÝÑ R with fpa, b, cq “ a2b ` b2c ` c2a and the constraint
function gpa, b, cq “ a ` b ` c with the constraint set C “ tx P Rn | gpxq “ 1u. Clearly both functions
have continuous first derivatives. We want to maximize the function f over the set

S “ U X C “ tx P U | gpxq “ 1u

Since U and C are closed and U is bounded, S is compact and f achieves a global maximum over S.
Consider the set

S1 “ tx P U 1 “ r0, 1s3zp0, 1q3 | gpxq “ 1

. If one variable is 0, say c, then it is enough to show that a2b ď 4
27 , or a2p1 ´ aq “ a2 ´ a3 ď 4

27 for
0 ď a ď 1, which is easy by standard calculus methods. If two are 0, then f is 0. If one is 1, we are
also done. The other cases clearly don’t satisfy the constraint. Thus the maximum of f along U 1 is 4

27 .
It suffices to prove that f does not succeed that value in p0, 3q. Clearly, ∇gpxq “ x1, 1, 1y ‰ 0, so we
may introduce Lagrange Multipliers.
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a ` b ` c “ 1
2ab “ λ

2bc “ λ

2ca “ λ

We first set 2ab “ λ “ 2bc ðñ a “ c. Similarly we get a “ b, so a “ b “ c. Thus the only point in
S where f could achieve a global maximum is a “ b “ c “ 1

3 , for which we get fpa, b, cq “ 4
27 . This

completes the proof.
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