1 Lagrange Multipliers

This handout was inspired by Evan Chen's handout. This handout comes along with my video on Lagrange Multipliers which also gives a visually intuitive explanation on how Lagrange Multipliers work.

§1.1 Theory

Calculus is not required for math olympiads at any level, i.e. every problem has a solution that completely avoids calculus methods. One often does not get any problems when simply taking derivatives to check whether a function is increasing, convex, etc., but when using more advanced methods graders tend to get very picky with details, so even doing one sign error may result in getting 0 points instead of 7. This section will introduce Lagrange Multipliers, a method that can often optimize a function that has a restriction on its variables.

Theorem 1.1.1: Lagrange Multipliers

Let $U \subset \mathbb{R}^{n}$ be an open subset, and let $f: U \longrightarrow \mathbb{R}$ and $g: U \longrightarrow \mathbb{R}$ be two functions with continuous first derivatives. Define the constraint set

$$
S=\{x \in U \mid g(x)=c\}
$$

Suppose $x^{\prime} \in S$ is a local maximum of f along S. Then either $\nabla g\left(x^{\prime}\right)=0$ at that point, or for some real number λ

$$
\nabla f\left(x^{\prime}\right)=\lambda \nabla g\left(x^{\prime}\right)
$$

So far, this does not tell us how to actually find a global maximum/minimum, as we usually want to. But notice that there does not even need to be a global maximum/minimum. However, we can often transform the condition in the theorem statement that actually helps us getting something out of it.

Lemma 1.1.1: Compact Sets induce Maximums - Let K be a compact set and let f : $K \longrightarrow \mathbb{R}$ be a continuous function. Then f achieves a global maximum and a global minimum over K.

This means that we will usually make U compact by showing that it is bounded and take its closure \bar{U}. This then guarantees that we could find global extrema over U. However, we want to find a global extremum over the constraint set, so we need the following lemma.

Lemma 1.1.2: Pre-Images are Closed Sets - Let $g: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a continuous function. Then the set

$$
C=\left\{x \in \mathbb{R}^{n} \mid g(x)=c\right\}
$$

is closed for every real number c.
Now we can consider the function $f: \bar{U} \longrightarrow \mathbb{R}$ subject to the constraint set, which we also need to be compact. By our second lemma, the set

$$
C=\left\{x \in \mathbb{R}^{n} \mid g(x)=c\right\}
$$

is closed. We now define

$$
S=U \cap C=\{x \in U \mid g(x)=c\}
$$

and

$$
\bar{S}=\bar{U} \cap C=\{x \in \bar{U} \mid g(x)=c\}
$$

As \bar{U} and C are closed, \bar{S} has to be closed as well. If one of them is also bounded, \bar{S} is bounded, and f achieves a global maximum over \bar{S}. But since we only want to consider $x \in U$, we have to consider two cases.

1. $x \in \bar{U} \backslash U$: This has to be done manually.
2. $x \in U$: Here we can now use Lagrange Multipliers.

After this is done, we can use Lagrange Multipliers: First of all we have to check whether $\nabla g(x)$ can be 0 . If this is not the case, we can check all critical points and find the global maximum or minimum. Here we can see why Lagrange Multipliers only work for open sets U : if it where closed, then we could have a global extremum at the interval endpoint, where the gradiant does not necessarily have to be 0 . But since we eliminated that case, we are good to go. The following is now the standard procedure when solving a problem with Lagrange Multipliers.

1. State/show that f and g have continuous first derivatives.
2. Consider the closure \bar{U} of the function f you want to optimize and consider the set $C=\{x \in$ $\left.\mathbb{R}^{n} \mid g(x)=c\right\}$, which has to be closed.
3. Define S and \bar{S}.
4. Show that \bar{S} is bounded and hence compact. State that now f has to achieve a maximum/minimum over S.
5. Check the boundary region and conclude that the points in there cannot be the extremum you want to find. Thus f must achieve a global maximum over S.
6. Check that $\nabla g(x) \neq 0$.
7. Check all critical points. If you want to find a maximum (resp minimum), the critial point with the largest (resp. smallest) value must be it.

§1.2 Examples

Example 1.2.1: Korea 2019

Let x, y, z be real numbers such that $x^{2}+y^{2}+z^{2}=174$. Find the difference between the maximum and the minimum of the following expression:

$$
x+y+z-x y-y z-z x
$$

Proof. Clearly, $x, y, z \in[-\sqrt{147}, \sqrt{147}]=: U$. Define the function

$$
f: U \longrightarrow \mathbb{R}, f(x, y, z)=x+y+z-x y-y z-z x
$$

and the function

$$
g(x, y, z)=x^{2}+y^{2}+z^{2}
$$

which are both clearly differentiable with continuous first derivatives. Set $C=\left\{r \in \mathbb{R}^{3} \mid g(r)=147\right\}$. We want to optimize f over the set

$$
S=U \cap C=\{r \in U \mid g(r)=147\}
$$

As U and C are closed and U is bounded, S is compact, so f achieves a global maximum and minimum over S. We may now use Lagrange Multipliers. Clearly $\nabla g(x)=\langle 2 x, 2 y, 2 z\rangle \neq 0$, so there exists a real number λ such that

$$
\left\{\begin{array}{l}
x^{2}+y^{2}+z^{2}=147 \\
1-y-z=\lambda \cdot 2 x \\
1-z-x=\lambda \cdot 2 y \\
1-x-y=\lambda \cdot 2 z
\end{array}\right.
$$

Subtracting the third from the second gives gives $x-y=2 \lambda(x-y)$. If $2 \lambda \neq 1$ than $x=y=z$, so $3 x^{2}=147 \longrightarrow x=y=z= \pm 7$, giving the critical points -168 and -126 . Otherwise, we have $\lambda=\frac{1}{2}$, so $x+y+z=1$. Then, we have

$$
1=(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+y z+z x)=147+2(x y+y z+z x)
$$

or $-x y-y z-x z=73$, meaning $f(x, y, z)=x+y+z+73=74$. Since those are the three critical points, we have that $\max (f)-\min (f)=74-(-168)=242$.

Example 1.2.2: Germany, Round 3, 2015/5

et x, y, z be real numbers such that $x+y+z=0$ and all numbers are at most 1 . Prove that

$$
x^{2}+y^{2}+z^{2}-x y-y z-z x \leqslant 9
$$

and determine all equality cases.
Proof. It is clear that $x, y, z \geqslant-2$, because otherwise the sum condition gets violated. Define the function $f: U=[-2,1]^{3} \longrightarrow \mathbb{R}$ with $f(x, y, z)=x^{2}+y^{2}+z^{2}-x y-y z-z x$ and $g(x, y, z)=x+y+z=0$. It is easy to see that both functions are differentiable with continuous first partial derivatives. Define the set

$$
C=\left\{x \in \mathbb{R}^{3} \mid g(x)=0\right\}
$$

which is well-known to be closed. We want to maximize f along the set

$$
S=U \cap C=\{x \in U \mid g(x)=0\}
$$

As U and C are closed and U is furthermore bounded, S is compact and f achieves a global maximum over S. Let $U^{\prime}=(-2,1)^{3}$. We now have two cases.

1. $(x, y, z) \in U \backslash U^{\prime}$, i.e $x, y, z \in\{-2,1\}$. In that case, exactly one variable must be -2 and the other two must be 1 in order for $x+y+z=0$ to be satisfied. It is easy to check that the inequality is satisfied in this case, even equality is achieved.
2. $(x, y, z) \in(-2,1)^{3}$. For that we may use Lagrange multipliers.

First of all $\nabla g(x)=\langle 1,1,1\rangle \neq 0$. Therefore, we can introduce a real number λ such that

$$
\left\{\begin{array}{l}
x+y+z=0 \\
2 x-y-z=\lambda \cdot 1 \\
2 y-z-x=\lambda \cdot 1 \\
2 z-x-y=\lambda \cdot 1
\end{array}\right.
$$

so $x=y=z=0$. This critical point is the only other point besides the three points from the first case where a global maximum could occur, but (x, y, z) is clearly not a maximum, so we are done.

§1.3 Problems

Problem 1.1 (Canada MO 1999/5). Prove that for nonnegative real numbers a, b, c with $a+b+c=1$ we have

$$
a^{2} b+b^{2} c+c^{2} a \leqslant \frac{4}{27}
$$

§1.4 Solutions

Problem 1.1 (Canada MO 1999/5). Prove that for nonnegative real numbers a, b, c with $a+b+c=1$ we have

$$
a^{2} b+b^{2} c+c^{2} a \leqslant \frac{4}{27}
$$

Proof. Define the function $f: U=[0,1]^{3} \longrightarrow \mathbb{R}$ with $f(a, b, c)=a^{2} b+b^{2} c+c^{2} a$ and the constraint function $g(a, b, c)=a+b+c$ with the constraint set $C=\left\{x \in \mathbb{R}^{n} \mid g(x)=1\right\}$. Clearly both functions have continuous first derivatives. We want to maximize the function f over the set

$$
S=U \cap C=\{x \in U \mid g(x)=1\}
$$

Since U and C are closed and U is bounded, S is compact and f achieves a global maximum over S. Consider the set

$$
S^{\prime}=\left\{x \in U^{\prime}=[0,1]^{3} \backslash(0,1)^{3} \mid g(x)=1\right.
$$

. If one variable is 0 , say c, then it is enough to show that $a^{2} b \leqslant \frac{4}{27}$, or $a^{2}(1-a)=a^{2}-a^{3} \leqslant \frac{4}{27}$ for $0 \leqslant a \leqslant 1$, which is easy by standard calculus methods. If two are 0 , then f is 0 . If one is 1 , we are also done. The other cases clearly don't satisfy the constraint. Thus the maximum of f along U^{\prime} is $\frac{4}{27}$. It suffices to prove that f does not succeed that value in $(0,3)$. Clearly, $\nabla g(x)=\langle 1,1,1\rangle \neq 0$, so we may introduce Lagrange Multipliers.

$$
\left\{\begin{array}{l}
a+b+c=1 \\
2 a b=\lambda \\
2 b c=\lambda \\
2 c a=\lambda
\end{array}\right.
$$

We first set $2 a b=\lambda=2 b c \Longleftrightarrow a=c$. Similarly we get $a=b$, so $a=b=c$. Thus the only point in S where f could achieve a global maximum is $a=b=c=\frac{1}{3}$, for which we get $f(a, b, c)=\frac{4}{27}$. This completes the proof.

