Germany 2020, Grade 10, Round 3/6

Joel Gerlach

June 2022

Let a sequence of positive real numbers $a_{1}, a_{2}, a_{3}, \ldots$ with $a_{59}=59$ be given, such that $a_{m \cdot n}=a_{m} \cdot a_{n}$ and $a_{m} \leq a_{n}$ holds for all positive integers m, n with $m \leq n$.

Show that $a_{2019}=2019$.

Proof. We have $a_{59 \cdot k}=a_{59} \cdot a_{k}=59 \cdot a_{k}$. Assume ftsoc that $a_{2}=1$. Then we would have $a_{118}=a_{2} \cdot a_{59}=59$ and thus $a_{59}=\ldots=a_{118}=59$. This would also imply that $a_{2 n}=a_{2} \cdot a_{n}=a_{n}$. But this leads to a contradiction as this would imply $a_{1}=a_{2}=a_{4}=a_{8}=\ldots=a_{64}=1=59$. Otherwise assume that $a_{2} \geq 3$. Then $3481=a_{3481}=a_{59.59} \geq a_{2048}=a_{2}^{6} \geq 3^{11} \geq 100000$, a contradiction. It is easy to get $a_{1}=1$. We now have the following claim.

Claim $1-a_{n}<n+1$.
Proof of Claim 1. We proceed by contradiction. Therefore, assume that $a_{n} \geq n+1$. Choose j large enough such that for some k we have $59^{j} \geq n^{k}$ but $(n+1)^{k}>59^{j}$. This gets us

$$
a_{59 j}=\left(a_{59}\right)^{j}=59^{j} \geq a_{n^{k}}=\left(a_{n}\right)^{k} \geq(n+1)^{k}>59^{j},
$$

a contradiction.
Claim $2-a_{n}<a_{n+1}$
Proof of Claim 2. It suffices to check $a_{n}=a_{n+1}$ as $a_{n+1}<a_{n}$ is forbidden by the problem statement. Let $a_{n}=a_{n+1}=k$. We then have,

$$
a_{n \cdot n}=a_{n} \cdot a_{n} \cdot a_{n+1}=a_{n \cdot(n+1)}=a_{n \cdot(n+1)}
$$

And thus $a_{n}=a_{n+1}=\ldots=a_{n(n+1)}$. Repeating this for the last two of these equal terms we can eventually make all terms greater than a_{n} equal to each other, as long as $n \leq 59$, we actually force all $a_{k}=59, k \geq n$, as $a_{59}=59$ is given, which eventually leads to a contradiction as say $a_{59.59}=59 \cdot 59 \neq 59$. Therefore we have $a_{n}>n-1$ for all $59 \geq n \geq 1$. Similarly, if $a_{n}=a_{n+1}=k, n>59$, we have to eventually make all terms equal to k, but if we choose j large enough and so that $59^{j} \neq k$, then $a_{59^{j}}=59^{j} \neq k$, which is again a contradiction.

Combining the two claims we get that $a_{n}=n$ for all n, which also implies that desired result.

